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Papers and patents arebecoming less ‘DISRUPTIVE’ SCIENCE
disruptive over time HAS DECLINED —EVEN

AS PAPERS PROLIFERATE
DISRUPTIVE SCIENCE DWINDLES

The proportion of publications that send a field
To quantify how much a paper shakes up a field, researchers used a metric called a CD index,

inanew direction has plummeted since the 1940s.
which ranges from 1 for the most disruptive papers to -1 for the least disruptive. Analysis of
millions of papers shows that disruptiveness has fallen over time in all analysed fields.
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Large teams develop and small teams disrupt
science and technology

a c Distinguish words in research article titles
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Pharmaceutical applications
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Hydrogen to the rescue

Large-scale, environmentally friendly hydrogen production will rely on steam methane reforming coupled with
carbon capture and electrolysis, but solar fuels could have a disruptive role to play.
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A Conventional technology
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Electrified methane reforming:

A compact approach to greener

Wismann et al., Science 364, 756-759 (2019)
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In-situ CO, sorption for enhanced hydrogen production

water-gas shift
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Hydrogen from aqueous-phase reforming of bio-feeds
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Hydrogen from chemical looping steam reforming
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Using hydrogen for ICCU (e.g., ICCU-Methanation)
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Using hydrogen for tandem amine-based CO, capture and hydrogenation to methanol

[ A CO, capture using amines
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